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The Resolution Function in Neutron Diffractometry. II. The Resolution Function 
of a Conventional Two-Crystal Neutron Ditfractometer for Elastic Scattering* 

BY M .  J. COOPER'~ AND R.  NATHANS 

Brookhaven National Laboratory, Upton, New York, U.S.A. 

(Received 5 December 1967 and in revised form 19 January 1968) 

The relationship of the resolution function of a conventional two-crystal neutron diffractometer for 
elastic scattering to the resolution function of a three-crystal diffractometer is discussed. An analytic 
expression is derived for its form assuming Gaussian mosaic and collimation angles and the application 
of this to the measurement of elastic scattering is considered. 

1. Introduction 

The layout of a typical two-crystal diffractometer is 
illustrated in Fig. 1. 20u and 20s are the scattering 
angles of the monochromator and sample respectively 
and the settings of these angles define the point in 
Q space for which the probability of detection of a 
neutron is highest, according to the relations: 

kz = X/dM sin OM (1) 

Q o = k F - k i ,  (2) 

where dM is the d spacing of the monochromator and 
the angle between kF and k1 (the most probable wave 
vectors) is 20s. The resolution function of the instru- 
ment is then the probability of detection of neutrons 
as a function of AQ when the instrument has been set 

* Work  per formed under  the auspices of  the U.S. Atomic  
Energy Commission.  

t Present address:  Materials Physics Division, A.E.R.E.,  
Harwell, Berks., England.  
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Fig. 1. Layout  of  a typical two-crystal diffractometer.  

to measure a scattering process corresponding to the 
point Q0. 

In an earlier paper (Cooper & Nathans, 1967), which 
we shall refer to as paper I*, we have considered the 
general features of the resolution function of a crystal 
neutron diffractometer and its experimental determina- 
tion. An analytic expression was derived for its form 
for a three-crystal diffractometer assuming Gaussian 
mosaic and collimation functions. In the present paper 
we shall consider the case of a two-crystal diffractom- 
eter for elastic scattering and we shall derive the 
corresponding but more simple analytic expression. 

Although we shall use the same notation as in paper 
I and show how the resolution function of a two-crystal 
diffractometer for elastic scattering is simply a special 
case of the resolution function derived for a three-crystal 
diffractometer, we shall derive the two-crystal resolu- 
tion function independently so that a knowledge of the 
details of the three-crystal analysis is not necessary. 

A detailed knowledge of the resolution function is 
essential in any study of diffuse scattering since the 
apparent value of the cross-section will in fact be the 
mean value obtained by weighting the cross-section 
throughout Q space by the value of the resolution 
function at each point. It is necessary, even in the 
measurement of integrated Bragg intensities, if an ac- 
curate correction for the contribution of diffuse scat- 
tering (e.g. thermal diffuse scattering) is required. In 
addition, the resolution function is directly applicable 
to the observation of Bragg peaks when details of the 
mosaic spread of the sample are being studied or when 
a direct determination of the resolution function is 
required. We shall therefore consider the application 
of the resolution function in § 3. 

2. Derivation of the resolution function 

The two-crystal diffractometer provides no energy reso- 
lution and in the present analysis we shall consider 
only elastic scattering processes, i.e. kv =ki.  

* The authors  are grateful to Dr  J. Als-Nielsen for point ing 
out  two minor  errors in paper  I" in equat ion (67b) there should  
be a dos ing  bracket  after M14 and the f i r s t -  cl occurring in 
equat ion (67d) should be omitted,  so that  the second term be- 
comes - GI (M14-  clM44) 2. 
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Fig.2 shows a vector diagram in reciprocal space. 
k~ and kl  are wave vectors corresponding to any elastic 
scattering process (k1=k0  in the sample and we shall 
define Ak~ = k ~ - k x  and A k s = k l - k F .  We shall define 
divergence angles and mosaic and collimation param- 
eters as before (paper I, derivation of the resolution 
function) but with region 2 as sample to detector. 

The probability of a neutron being detected is then 
as given in paper I, equation (6), equating the analyzer 
term P(Akl,72) [paper I, equation (5)] to unity (PA = 1, 
tan 0.4 = 0, r/.4 = oo), and omitting the analyzer to detec- 
tor terms, i.e. 

P(Aki, 71, 72, 51, 52) 

{ 1 [((Aki/kz) t an0M+71)2  
= PMPo exp - ~ r / i  

[ 2(Ak,/kz) tan O M + 71 x~ 2 7~ ~12 + ) + - - + . . _  

52 52 522]],. (3) 
+ (4tan2OMtf~+f l~)  + ~ 2  - +  fl~JJ 

As before, the expression for the probability can be 
separated into two independent terms, a horizontal 

term Pu(Aki, 71, 72) and a vertical term Pv(51,52) such 
that the total probability P =  PH x Pv, and the value 
of the resolution function at a given point in reciprocal 
space is obtained by integrating the probability over 
all possible paths (k~, kl) to that point: 

? 

R(Q) = 1 P(Q)dk~.  (4) 

The resolution function can be written in the form: 

3 3 
R ( Q 0 + A Q ) = R 0 e x p { - ½  X X Mk~X~Xz), (5) 

k=l  I=l 

where X1 = A Qx, X2 = A Qu, X =  A Qz and for convenience 
X1 is taken parallel to Qo and X3 is taken to be vertical. 
Ro is the optimum value of the resolution function 
R(Qo). Ro and Met are functions of kz, Qo, rim, din, ~0, ~1, 

The resolution function can thus be calculated as a 
special case of that derived in paper I, Appendix II, by 
putting 09 = 0, P.4 = 1, tan Oa = 0, ~3 =f13 = r/A = 0o. On the 
other hand, the derivation is considerably simplified 
by these conditions and is therefore given in the Ap- 
pendix to the present paper to avoid the necessity of 
considering this as a special case of a three-crystal 
diffractometer. 
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Fig. 2. Vector diagram in reciprocal space for an elastic scattering process. 
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3. Discussion 

As in the case of the three-crystal diffractometer the 
form of the resolution function derived for elastic 
scattering from a two-crystal diffractometer, assuming 
Gaussian mosaic and collimation functions, is such 
that the loci of constant probability are ellipsoids in Q 
space and the resolution function has a Gaussian 
dependence on A Q for any straight line through Q0. 

Using the derivation given in the Appendix a com- 
puter program can readily be written to evaluate the 
resolution function at any point in Q space. The inte- 
gral of the product of the resolution function and the 
scattering cross-section will then give the value of the 
intensity for any setting of the diffractometer: 

I(Q0) = l R(Q0+ AQ)am(Q0+ AQ)AQ, (6) 

where am is the cross-section integrated over the mosaic 
spread of the sample, M(qm), and qm is the reciprocal 
lattice vector defining translation from the point of 
optimum Bragg reflection: 

am(Q0+AQ)=  I a(Qo+AQ+qm)M(qm)dqm.  (7) 

Equation (6) can thus be used to calculate the the- 
oretical intensity for an experimental scan with any 
type of elastic scattering cross-section. In the case of 
a Bragg reflection we may note that if the mosaic 
function of the sample is also Gaussian in shape then 
any linear scan in Q space through the Bragg reflection 
will be Gaussian in shape. 

We should also point out that PM in equation (3) 
is a function of the wavelength since we have 

2~F z 
P u  oc sin 2 0 - - - - ~  ' (8) 

where 2z(= 2~z/kD is the incident wavelength and F is 
the structure factor for the appropriate reflection. 

The dependence of the peak intensity on the incident 
wavelength will also depend on the geometry of the 
monochromator  and on the wavelength distribution 
in the primary beam. However, it should be possible in 
a particular case to determine the optimum wavelength 
so that the magnitude of the resolution function can 
be reduced without undue loss in intensity. This factor 
may be particularly important in the case of a three- 
crystal diffractometer for the type of phonon measure- 
ments discussed in paper I. 

APPENDIX 
Derivation of the resolution matrix 

A vector diagram in reciprocal space is shown in Fig. 2. 
We shall define sets of orthogonal axes il,jl, ll; i2,j2,12 
and io,jo, lo such that ix,/2 and i0 are parallel to ki, ke  
and - Q 0  respectively and 11, 12 and 10 are vertical. 

If Ak, has components xx,yl, zx along axes il,ja, ll and 
Akl has components xz, yz, z2 along axes i2,j2,12 then we 

can readily determine their components along i0,j0,10. 
We have 

where 

Ak, = (Xlb +yla)i0 + ( - xla + ylb)j0 + zxl0 (9a) 

Aky = ( - x2b + y2a)i0 + ( -  x 2 a -  y2b)j0 + z210, (9b) 

a = cos Os (lOa) 

b = sin Os. (10b) 

Then for elastic scattering x2 = xx and the vector AQ 
- - A k l - A k i  will have the following components: 

AQx = - x12b + y z a - y l a  (1 la) 

AQu = - y a b - y l b  (1 lb) 

AQz = z 2 - z x .  ( l lc)  

Eliminating Yz and Yl from equations (1 la) and (1 lb) 
respectively we obtain 

1 A Q  v _ _ _ x l  (12a) Yl = - AQ~,-  2b- a 

1 1 b 
Y2= ~-a AQx - ~ AQy + --a xl . (12b) 

If we write 

then we have 

and 

where 

Yx = Cxx + D (13a) 

Y2 = Exx + F (13b) 

C =  - b/a = - tan Os (14a) 

E = b/a = tan Os (14b) 

D=dxAQx+ dzAQv (15a) 

F = f I A Q x + f 2 A Q v  (15b) 

d x = - l / 2 a  d z = - l / 2 b  (16a) 

f~ = l / 2 a  j~ = -  1/2b. (16b) 

The horizontal term in the resolution function is 
given by 

i oo + a2 ' 2 + a~Y22 
R H  OC _ooexp { -  ½[(axx l  + a2Yl )  2 3)'1 

+ (a7xl + asyx)2]}dxxdyxdy2 , ( 1 7 )  

where aj is given in terms of the collimation param- 
eters: 

ax=tan  OM/~MkI a4=l/azkx 

az=l /~Mkz  a7=2 tan OM/~okz 

a3=l/~lkz  as=l/~okz (18) 

[see equation (3)]. We are assuming that Aki and Aks 
are small compared with kx and that the usual small 
angle approximations are valid, so that yx=ki71, etc. 

A C 24A - 1" 
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Writ ing equat ion (17) as 

f ~ --~[A xl + B xx + C']}dxl RHW. _ e x p {  ' , 2 , 

and putt ing 

we have 

bo = a la2  + a7a8 

bl =a22 + 2 2 a3 + as  

b2=a?, 
b5 =a~ + a~ 

(19) 

(20) 

A' = 2boC + blC 2 + b2 E 2  + b5 (21 a) 

B'  = 2[(b0 + blC)O + b2F] (21b) 

C ' = biD 2 + b2F 2 (21c) 

and on integration equat ion (19) becomes 

R~r=/~o n exp { - ½ [ C ' - B ' 2 / 4 A ' ] } .  (22) 

F r o m  equations (21) it can be seen that  

C' - B'2/4A ' = go D2 + glF 2 + g4DF (23) 

where 
go = bl - (bo + bx C)2/A ' 

g l  = b2 - ( b 2 E ) 2 / A  ' 

g4 = - 2(bo + b~ C)bzE/A ' .  (24) 

We can then write the resolution function in the form 
3 3 

R ( Q 0 + A Q ) = R 0 e x p  { - ½  Z Z" MkzX~Xz}, (25) 
k=l l=1 

where XI=AQx ,  Xz=AQu,  X3=Aqz and we have 

Mkt = ½[2godkdz + 2glfiCfi + g4(dkfi + dzfk)] (26) 

for k and l =  1 or 2. 
Since the vertical term in the resolution function is 

independent of  the horizontal  term we have 

M~3 = M3z = 0 (27) 
for k , l +  3 
and the matr ix  element M33 is as derived in paper  I, 
equation (57): 

2 2 
allal2 

M33-- a121 +a22 (28) 

where 
1 1 

a'21 = (4 tan 2 ,2 2 2 + . . . . .  OMtl M+flo)k I fllkl2 2 

1 
022 = 2 2 • 

fl2kl 
(29) 
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Neutron Diffraction Studies of Anharmonie Temperature Factors in BaF2 
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Accurate integrated intensities for the Bragg reflexion of neutrons from BaF2 have been measured at 
various temperatures in the range 20-600°C and corrections for the effects of both thermal diffuse 
scattering and extinction have been applied. The experimental data show systematic deviations from 
the predictions of a model which assumes harmonic temperature factors for both types of atom, with 
observed intensities differing by up to + 60% from the calculated 'harmonic' values. Vibrational an- 
harmonicity can be allowed for by using an effective one-particle potential of the form: V~(r)= V0j 
+ ½~j (X 2 -~-y2 + z2)+ f~xyz, where x, y and z are the coordinates defining the instantaneous displacement 
r of the nucleus of the jth atom and ~j and fj are the coefficients of the quadratic and cubic terms re- 
spectively in the potential expansion. The site symmetry of the atoms allows the anharmonicity param- 
eter fj  to be non-zero only for the fluorine atoms, and introduction of this single parameter brings 
the observed and calculated structure factors into very good agreement (R ~ 1%) at all temperatures: 
the R value obtained for a harmonic model increases from 1.8% at room temperature to 8.9% at 600°C. 
The value obtained for fie is -3"06 x 10 -12 erg.A-3 at room temperature, falling to -2 .52  x 10 -12 
erg.A-3 at 600°C. The present measurements provide no evidence for the existence of any appreciable 
anisotropic quartic, or higher-order, contributions to the temperature factors. The ratio of nuclear 
scattering lengths, bBa/bF, was refined to 0.932 (_+ 0.004), which gives a value for the nuclear scattering 
length of barium of b~a=0.522 (+ 0"011)x 10 -12 cm, assuming bF= 0.560 (+ 0-010)x 10 -12 cm. 

1. Introduction 

Anisot ropy in the temperature  factors of  cubic crystals 
with atoms at sites of  non-centric cubic symmetry 

has previously been observed by Willis and co-workers 
in their studies of  UO2 (Willis, 1963; Rouse, Willis & 
Pryor,  1968) and CaF2 (Willis, 1965). In this paper  we 
present the results of  a neutron diffraction study of  


